

SIDDARTHA INSTITUTE OF SCIENCE & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Geotechnical Engineering(19CE0117)

Course & Branch: B.Tech - CE

Year & Sem: III-B.Tech & I-Sem

Regulation: R19

UNIT –I INTRODUCTION, PERMEABILITY & EFFECTIVE STRESS ANALYSIS

1	Explain the process of soil formation by weathering in details.	[L2][CO1]	[12M]
2	a) Classify various types of soil structures with neat sketch.	[L2][CO1]	[6M]
	b) Explain Clay mineralogy.	[L2][CO1]	[6M]
3	a) Using three phase diagram of soil, develop an expression for Void ratio, water	[L2][CO1]	[6M]
	content, specific gravity and degree of saturation.		
	b) The moist unit weight of soil sample is 19.2 kN/m^3 and has water content of	[L3][CO1]	[6M]
	9.8%. The specific gravity of soil particles is 2.69. Determine dry unit weight, void		
	ratio and porosity and degree of saturation.		
4	a) Write short notes on Index Properties of soils.	[L1][CO1]	[6M]
	b) Explain in detail the laboratory method for particle size distribution of coarse	[L1][C01] [L2][C01]	[6 M]
	grained soils by dry sieve analysis.		
5	Explain in detail the Indian Standard classification System and list out group symbols	[L2][CO1]	[6M]
	in detail.		[011]
6	Define Atterberg Limits.Explain the procedure of Liquid limit of soil.	[L2][CO2]	[12M]
7	Define permeability. Explain various factors affecting permeability.	[L2][CO2]	[12M]
8	Determine the average coefficient of permeability in the horizontal and vertical		
	direction for a deposit consisting of three layers of thickness 5m, 1m, and 2.5m and	[L3][CO2]	[12M]
	having the coefficient of permeability of 3 $x10^{-2}$ mm/sec, $3x10^{-5}$ mm/sec and 4 $x10^{-5}$		
	² mm/sec respectively.		
9	Explain the coefficient of permeability in laboratory by constant head method with	[L2][CO2]	[12M]
	neat sketch.		[
10	a) Explain Quick sand condition.	[L2][CO2]	[6M]
	b) Define flow net and various applications of flow net.	[L2][CO2]	[6M]

UNIT –II COMPACTION AND CONSOLIDATION

1	Describe the Standard Proctor test and modified Proctor test to be conducted in the		[10]
	laboratory.	[L2][CO3]	[12]/1]
2	Define compaction and explain various factors effecting the compaction.	[L2][CO3]	[12M]
	Write short notes on		
3	(i) Compaction phenomenon	[L1][CO3]	[6M]
	(ii) Method of compaction	[L1][CO3]	[6M]
4	Explain the procedure of Core Cutter method with neat sketch.	[L2][CO3]	[12M]
	a) The Maximum dry density of a sample by the light compaction test is 1.78g/ml at	[L3][CO3]	[6M]
	an optimum water content of 15%. Find the air voids and degree of saturation		
	G=2.67.What would be the corresponding value of dry density on the zero air voids		
5	at optimum moisture content.		
	b) An earth embankment is compacted at a water content 18%.to a bulk density of		
	19.2 kN/m ³ . If the specific gravity of the sand is 2.7 find the void ratio and the degree	[L3][CO3]	[6M]
	of saturation of compacted embankment.	[20][000]	[01.2]
6	Explain the procedure of Sand replacement method with neat sketch.	[L2][CO3]	[12M]
7	Define consolidation and various types of consolidations.	[L2][CO3]	[12M]
8	(a) Define preconsolidation pressure.	[L2][CO3]	[6M]
0	(b) Draw the graph representing preconsolidation pressure.	[L2][CO3]	[6M]
9	Explain the procedure of consolidation test with neat sketch.	[L2][CO3]	[12M]
	In a consolidation test the following results have been obtained. When the load was		
10	changed from 50 kN/m ² to 100 kN/m ² , the void ratio changed from 0.70 to 0.65.		[1 2]]
10	Determine compression index, coefficient of volume change and coefficient of	[L3][CO3]	[12]VI]
	consolidation in mm ² /sec.		

UNIT –III STRESS DISTRIBUTION IN SOILS AND SHEAR STRENGTH OF SOILS

1	Develop an expression for the vertical stress at a point due to a point load, using	[L2][CO4]	[12M]
	Boussinesq's theory.		
2	Explain Newmaark's influence chart with neat sketch.	[L2][CO4]	[12M]
3	a) A concentrated load of 2000 kN acts vertically at the ground surface. Determine	[L3][CO4]	[6M]
	the vertical stress at a point P which is 6m directly below the load. Also calculate		
	the vertical stress at a point R which is at a depth of 6m but at a horizontal distance		
	of 5m from the axis of the load.		
	b) Determine the vertical stress at a point P which is 3m below and at a radial distance	[L3][CO4]	[6M]
	of 3m from the vertical load 100kN. Use westergaard's solution.		
4	Explain vertical stress under line load, strip load, circular load and rectangular area	[L1][CO4]	[12M]
	with neat sketch.		
5	(a) Explain the concept of 'Westergaards theory' in soils.	[L2][CO4]	[6M]
	(b) What do you understand by 'Pressure bulb'? Illustrate with sketches.	[L2][CO4]	[6M]
6	Write brief critical notes on:		
	(a) Mohr's Circle of stress.	[L1][CO4]	[6M]
	(b) Explain the Mohr-Coulomb strength theory.	[L2][CO4]	[6M]
7	a) Explain types of soils based on total strength.	[L2][CO4]	[6M]
	b) Explain types of shear strength based on drainage conditions.	[L2][CO4]	[6M]
8	Explain the principle of the direct shear test. What are the advantages of this test? What	[L2][CO4]	[12M]
	are its Limitations.		
9	Describe the vane shear test with neat a sketch.	[L2][CO4]	[12M]
10	Explain the procedure of unconfined compression test with neat sketch.	[L2][CO4]	[12M]

UNIT –IV EARTH SLOPE STABILITY

1			
	(a) Define earth slope.	[L1][CO5]	
((b) Explain factor of safety with respect to shear strength, cohesion and friction.	[L2][CO5]	[6M]
2	(a) What are the factors causes the slope failures.	[L1][CO5]	[6M]
	(b) Explain different types of slope failures with neat sketches.	[L1][CO5]	[6M]
3	Derive the expression for stability analysis of infinite slope of cohesive soils.	[L2][CO5]	[12M]
4	Derive the expression for stability analysis of infinite slope of cohesion less soils	[L2][CO5]	[12M]
5	(a) Explain Taylor's stability number.	[L2][CO5]	[6M]
	(b) A vertical cut is made is made in a clay deposit (c=30 kN/m ² , $\Phi' = 0^{\circ}$, $\gamma = 16$ kN/m ²).	[L3][CO5]	[6M]
	Find the maximum height which can be temporarily supported. Take $S_n=0.261$.		
6	With the help of a neat sketch explain in detail about friction circle method.	[L2][CO5]	[12M]
7	A canal is to be excavated through a soil with $c = 15 \text{ kN/m}^2$, $\Phi = 20^\circ$, $e = 0.9$ and G	[L3][CO5]	[12M]
:	= 2.67. The side slope is 1 in 1. The depth of the canal is 6 m. determine the factor of		
:	safety with respect to cohesion when the canal runs full. What will be the factor of		
:	safety if the canal is rapidly emptied.		
8.	Analyze the slope, if it is made of clay having $c' = 30 \text{ kN/m}^2$, $\Phi' = 20^\circ$, $e = 0.65$ and	[L3][CO5]	[12M]
	G = 2.67 and under the following conditions: (i) When the soil is dry (ii) When water		
:	seeps parallel to the surface of the slope (iii) When the slope is submerged slope angle		
:	$=25^{\circ}$		
9	Give the step by step procedure of analyzing stability of a finite slope using Swedish	[L2[CO5]	[12M]
	circle method.		
10	With the help of a neat sketch show various forces considered for the analysis of a	[L2][CO5]	[12M]
:	finite slope using Bishop's simplified method. Mention the equation for factor of		
	Safety given by this method.		

UNIT –V SOIL EXPLORATION

1	(a) What are the different stages in sub soil exploration?	[L1][CO6]	[6M]
	(b) Explain various uses of site investigations.	[L2][CO6]	[6M]
2	Describe with a neat sketch how will you carry out the wash boring method of soil	[L2][CO6]	[12M]
	exploration.		
3	(a) Discuss various open excavation methods for conducting soil exploration.	[L2][CO6]	[6M]
	(b)Sketch scraper bucket sample and explain how an undisturbed soil sample is	[L2][CO6]	[6M]
	extracted using it.		
4	(a) How boring operations are carried out using rotary auger boring and percussion	[L2][CO6]	[6M]
	drilling.		
	(b) Describe the construct of a split spoon sampler. Explain how undisturbed soil	[L2][CO6]	[6M]
	sample is extracted using it.		
5	(a) Explain various types of soil samples.	[L2][CO6]	[6M]
	(b) List out various design features affecting the sample disturbance.	[L1][CO6]	[6M]
6	Give a detailed account on how Standard Penetration Test is conducted. What are	[L2][CO6]	[12M]
	the relevant corrections applied to SPT number?		
7	a) A SPT was conducted in fine sand below the water table and a value of 25 is	[L1][CO6]	[6M]
	obtained for N. What is the corrected value of N.		
	b) A SPT was conducted in a dense sand deposit at a depth of 22m and a value of 48	[L1][CO6]	[6M]
	was observed for N. The density of the sand was 15 kN/m^2 .What is the value of N		
	corrected for over burden pressure.		
8	Explain in detail how cone penetration test is conducted with neat sketch.	[L2][CO6]	[12M]
9	(a) Describe in detail execution of soil exploration program.	[L2][CO6]	[6M]
	(b) Explain various salient features of a soil exploration report	[L2][CO6]	[6M]
10	Explain in detail how plate load Test is conducted with neat sketch.	[L2][CO6]	[12M]

Prepared by: Mrs. K.ASHALATHA Asst Professor/CE